
ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem A

Decimal Sequences
Input: Standard Input
Time Limit: 1 second

Hanako learned the conjecture that all the non-negative integers appear in the infinite digit
sequence of the decimal representation of π = 3.14159265 · · · , the ratio of a circle’s circumference
to its diameter. After that, whenever she watches a sequence of digits, she tries to count up
non-negative integers whose decimal representations appear as its subsequences.

For example, given a sequence “3 0 1”, she finds representations of five non-negative integers 3,
0, 1, 30 and 301 that appear as its subsequences.

Your job is to write a program that, given a finite sequence of digits, outputs the smallest non-
negative integer not appearing in the sequence. In the above example, 0 and 1 appear, but 2
does not. So, 2 should be the answer.

Input

The input consists of a single test case.

n
d1 d2 · · · dn

n is a positive integer that indicates the number of digits. Each of dk’s (k = 1, . . . , n) is a digit.
There is a space or a newline between dk and dk+1 (k = 1, . . . , n− 1).

You can assume that 1 ≤ n ≤ 1000.

Output

Print the smallest non-negative integer not appearing in the sequence.

Sample Input 1 Sample Output 1

3

3 0 1

2

Sample Input 2 Sample Output 2

11

9 8 7 6 5 4 3 2 1 1 0

12

1



Sample Input 3 Sample Output 3

10

9 0 8 7 6 5 4 3 2 1

10

Sample Input 4 Sample Output 4

100

3 6 7 5 3 5 6 2 9 1 2 7 0 9 3 6 0 6 2

6 1 8 7 9 2 0 2 3 7 5 9 2 2 8 9 7 3 6

1 2 9 3 1 9 4 7 8 4 5 0 3 6 1 0 6 3 2

0 6 1 5 5 4 7 6 5 6 9 3 7 4 5 2 5 4 7

4 4 3 0 7 8 6 8 8 4 3 1 4 9 2 0 6 8 9

2 6 6 4 9

11

Sample Input 5 Sample Output 5

100

7 2 7 5 4 7 4 4 5 8 1 5 7 7 0 5 6 2 0

4 3 4 1 1 0 6 1 6 6 2 1 7 9 2 4 6 9 3

6 2 8 0 5 9 7 6 3 1 4 9 1 9 1 2 6 4 2

9 7 8 3 9 5 5 2 3 3 8 4 0 6 8 2 5 5 0

6 7 1 8 5 1 4 8 1 3 7 3 3 5 3 0 6 0 6

5 3 2 2 2

86

Sample Input 6 Sample Output 6

1

3

0

2



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem B

Squeeze the Cylinders
Input: Standard Input
Time Limit: 1 second

Laid on the flat ground in the stockyard are a number of heavy metal cylinders with (possibly)
different diameters but with the same length. Their ends are aligned and their axes are oriented
to exactly the same direction.

We’d like to minimize the area occupied. The cylinders are too heavy to lift up, although rolling
them is not too difficult. So, we decided to push the cylinders with two high walls from both
sides.

Your task is to compute the minimum possible distance between the two walls when cylinders
are squeezed as much as possible. Cylinders and walls may touch one another. They cannot be
lifted up from the ground, and thus their order cannot be altered.

Figure B.1. Cylinders between two walls

Input

The input consists of a single test case. The first line has an integer N (1 ≤ N ≤ 500), which is
the number of cylinders. The second line has N positive integers at most 10,000. They are the
radii of cylinders from one side to the other.

Output

Print the distance between the two walls when they fully squeeze up the cylinders. The number
should not contain an error greater than 0.0001.

3



Sample Input 1 Sample Output 1

2

10 10

40.00000000

Sample Input 2 Sample Output 2

2

4 12

29.85640646

Sample Input 3 Sample Output 3

5

1 10 1 10 1

40.00000000

Sample Input 4 Sample Output 4

3

1 1 1

6.00000000

Sample Input 5 Sample Output 5

2

5000 10000

29142.13562373

The following figures correspond to the Sample 1, 2, and 3.

Figure B.2. Sample 1
Figure B.3. Sample 2

Figure B.4. Sample 3

4



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem C

Sibling Rivalry
Input: Standard Input
Time Limit: 2 seconds

You are playing a game with your elder brother.

First, a number of circles and arrows connecting some pairs of the circles are drawn on the
ground. Two of the circles are marked as the start circle and the goal circle.

At the start of the game, you are on the start circle. In each turn of the game, your brother
tells you a number, and you have to take that number of steps. At each step, you choose one of
the arrows outgoing from the circle you are on, and move to the circle the arrow is heading to.
You can visit the same circle or use the same arrow any number of times.

Your aim is to stop on the goal circle after the fewest possible turns, while your brother’s aim is
to prevent it as long as possible. Note that, in each single turn, you must take the exact number
of steps your brother tells you. Even when you visit the goal circle during a turn, you have to
leave it if more steps are to be taken.

If you reach a circle with no outgoing arrows before completing all the steps, then you lose the
game. You also have to note that, your brother may be able to repeat turns forever, not allowing
you to stop after any of them.

Your brother, mean but not too selfish, thought that being allowed to choose arbitrary numbers
is not fair. So, he decided to declare three numbers at the start of the game and to use only
those numbers.

Your task now is, given the configuration of circles and arrows, and the three numbers declared,
to compute the smallest possible number of turns within which you can always finish the game,
no matter how your brother chooses the numbers.

Input

The input consists of a single test case, formatted as follows.

n m a b c
u1 v1
...
um vm

5



All numbers in a test case are integers. n is the number of circles (2 ≤ n ≤ 50). Circles are
numbered 1 through n. The start and goal circles are numbered 1 and n, respectively. m is the
number of arrows (0 ≤ m ≤ n(n− 1)). a, b, and c are the three numbers your brother declared
(1 ≤ a, b, c ≤ 100). The pair, ui and vi, means that there is an arrow from the circle ui to the
circle vi. It is ensured that ui 6= vi for all i, and ui 6= uj or vi 6= vj if i 6= j.

Output

Print the smallest possible number of turns within which you can always finish the game. Print
IMPOSSIBLE if your brother can prevent you from reaching the goal, by either making you repeat
the turns forever or leading you to a circle without outgoing arrows.

Sample Input 1 Sample Output 1

3 3 1 2 4

1 2

2 3

3 1

IMPOSSIBLE

Sample Input 2 Sample Output 2

8 12 1 2 3

1 2

2 3

1 4

2 4

3 4

1 5

5 8

4 6

6 7

4 8

6 8

7 8

2

For Sample Input 1, your brother may choose 1 first, then 2, and repeat these forever. Then
you can never finish.

For Sample Input 2 (Figure C.1), if your brother chooses 2 or 3, you can finish with a single
turn. If he chooses 1, you will have three options.

• Move to the circle 5. This is a bad idea: Your brother may then choose 2 or 3 and make
you lose.

• Move to the circle 4. This is the best choice: From the circle 4, no matter any of 1, 2, or
3 your brother chooses in the next turn, you can finish immediately.

6



• Move to the circle 2. This is not optimal for you. If your brother chooses 1 in the next
turn, you cannot finish yet. It will take three or more turns in total.

In summary, no matter how your brother acts, you can finish within two turns. Thus the answer
is 2.

2

6

75

GOAL

START

3

4

88

11

Figure C.1. Sample Input 2

7



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem D

Wall Clocks
Input: Standard Input
Time Limit: 1 second

You are the manager of a chocolate sales team. Your team customarily takes tea breaks every two
hours, during which varieties of new chocolate products of your company are served. Everyone
looks forward to the tea breaks so much that they frequently give a glance at a wall clock.

Recently, your team has moved to a new office. You have just arranged desks in the office. One
team member asked you to hang a clock on the wall in front of her desk so that she will not be
late for tea breaks. Naturally, everyone seconded her.

You decided to provide an enough number of clocks to be hung in the field of view of everyone.
Your team members will be satisfied if they have at least one clock (regardless of the orientation
of the clock) in their view, or, more precisely, within 45 degrees left and 45 degrees right (both
ends inclusive) from the facing directions of their seats. In order to buy as few clocks as
possible, you should write a program that calculates the minimum number of clocks needed to
meet everyone’s demand.

The office room is rectangular aligned to north-south and east-west directions. As the walls
are tall enough, you can hang clocks even above the door and can assume one’s eyesight is not
blocked by other members or furniture. You can also assume that each clock is a point (of size
zero), and so you can hang a clock even on a corner of the room.

For example, assume that there are two members. If they are sitting facing each other at
positions shown in Figure D.1(A), you need to provide two clocks as they see distinct sections
of the wall. If their seats are arranged as shown in Figure D.1(B), their fields of view have a
common point on the wall. Thus, you can meet their demands by hanging a single clock at the
point. In Figure D.1(C), their fields of view have a common wall section. You can meet their
demands with a single clock by hanging it anywhere in the section. Arrangements (A), (B), and
(C) in Figure D.1 correspond to Sample Input 1, 2, and 3, respectively.

Input

The input consists of a single test case, formatted as follows.

n w d
x1 y1 f1
...
xn yn fn

8



(A) (B) (C)
Figure D.1. Arrangements of seats and clocks. Gray area indicates field of view.

All numbers in the test case are integers. The first line contains the number of team members n
(1 ≤ n ≤ 1, 000) and the size of the office room w and d (2 ≤ w, d ≤ 100, 000). The office room
has its width w east-west, and depth d north-south. Each of the following n lines indicates the
position and the orientation of the seat of a team member. Each member has a seat at a distinct
position (xi, yi) facing the direction fi, for i = 1, . . . , n. Here 1 ≤ xi ≤ w − 1, 1 ≤ yi ≤ d− 1,
and fi is one of N, E, W, and S, meaning north, east, west, and south, respectively. The position
(x, y) means x distant from the west wall and y distant from the south wall.

Output

Print the minimum number of clocks needed.

Sample Input 1 Sample Output 1

2 10 6

4 4 E

6 4 W

2

Sample Input 2 Sample Output 2

2 10 6

2 4 E

6 4 W

1

Sample Input 3 Sample Output 3

2 10 6

3 2 S

6 4 W

1

9



Sample Input 4 Sample Output 4

6 10 6

1 5 N

7 1 N

8 2 E

9 1 S

4 4 S

3 3 W

3

Sample Input 5 Sample Output 5

4 10 6

4 3 W

2 4 N

4 4 W

3 3 S

2

Sample Input 6 Sample Output 6

4 100000 40000

25000 25000 S

20000 30000 S

75000 25000 S

80000 30000 S

1

10



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem E

Bringing Order to Disorder
Input: Standard Input
Time Limit: 1 second

A sequence of digits usually represents a number, but we may define an alternative interpreta-
tion. In this problem we define a new interpretation with the order relation ≺ among the digit
sequences of the same length defined below.

Let s be a sequence of n digits, d1d2 · · · dn, where each di (1 ≤ i ≤ n) is one of 0, 1, . . . , and 9.
Let sum(s), prod(s), and int(s) be as follows:

sum(s) = d1 + d2 + · · ·+ dn

prod(s) = (d1 + 1)× (d2 + 1)× · · · × (dn + 1)

int(s) = d1 × 10n−1 + d2 × 10n−2 + · · ·+ dn × 100

int(s) is the integer the digit sequence s represents with normal decimal interpretation.

Let s1 and s2 be sequences of the same number of digits. Then s1 ≺ s2 (s1 is less than s2) is
satisfied if and only if one of the following conditions is satisfied.

1. sum(s1) < sum(s2)

2. sum(s1) = sum(s2) and prod(s1) < prod(s2)

3. sum(s1) = sum(s2), prod(s1) = prod(s2), and int(s1) < int(s2)

For 2-digit sequences, for instance, the following relations are satisfied.

00 ≺ 01 ≺ 10 ≺ 02 ≺ 20 ≺ 11 ≺ 03 ≺ 30 ≺ 12 ≺ 21 ≺ · · · ≺ 89 ≺ 98 ≺ 99

Your task is, given an n-digit sequence s, to count up the number of n-digit sequences that are
less than s in the order ≺ defined above.

Input

The input consists of a single test case in a line.

d1d2 · · · dn

n is a positive integer at most 14. Each of d1, d2, . . . , and dn is a digit.

11



Output

Print the number of the n-digit sequences less than d1d2 · · · dn in the order defined above.

Sample Input 1 Sample Output 1

20 4

Sample Input 2 Sample Output 2

020 5

Sample Input 3 Sample Output 3

118 245

Sample Input 4 Sample Output 4

11111111111111 40073759

Sample Input 5 Sample Output 5

99777222222211 23733362467675

12



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem F

Deadlock Detection
Input: Standard Input
Time Limit: 2 seconds

You are working on an analysis of a system with multiple processes and some kinds of resource
(such as memory pages, DMA channels, and I/O ports). Each kind of resource has a certain
number of instances. A process has to acquire resource instances for its execution. The number
of required instances of a resource kind depends on a process. A process finishes its execution
and terminates eventually after all the resource in need are acquired. These resource instances
are released then so that other processes can use them. No process releases instances before its
termination. Processes keep trying to acquire resource instances in need, one by one, without
taking account of behavior of other processes. Since processes run independently of others, they
may sometimes become unable to finish their execution because of deadlock.

A process has to wait when no more resource instances in need are available until some other
processes release ones on their termination. Deadlock is a situation in which two or more
processes wait for termination of each other, and, regrettably, forever. This happens with the
following scenario: One process A acquires the sole instance of resource X, and another process
B acquires the sole instance of another resource Y; after that, A tries to acquire an instance
of Y, and B tries to acquire an instance of X. As there are no instances of Y other than one
acquired by B, A will never acquire Y before B finishes its execution, while B will never acquire
X before A finishes. There may be more complicated deadlock situations involving three or more
processes.

Your task is, receiving the system’s resource allocation time log (from the system’s start to a
certain time), to determine when the system fell into a deadlock-unavoidable state. Deadlock
may usually be avoided by an appropriate allocation order, but deadlock-unavoidable states are
those in which some resource allocation has already been made and no allocation order from
then on can ever avoid deadlock.

Let us consider an example corresponding to Sample Input 1 below. The system has two kinds
of resource R1 and R2, and two processes P1 and P2. The system has three instances of R1 and
four instances of R2. Process P1 needs three instances of R1 and two instances of R2 to finish
its execution, while process P2 needs a single instance of R1 and three instances of R2. The
resource allocation time log is given as follows.

13



P1’s need P2’s need available
time event R1 R2 R1 R2 R1 R2 deadlock

0 start. 3 2 1 3 3 4
1 P1 acquired R1. 2 2 1 3 2 4
2 P2 acquired R2. 2 2 1 2 2 3
3 P1 acquired R2. 2 1 1 2 2 2
4 P2 acquired R1. 2 1 0 2 1 2 avoidable by finishing P2 first
5 P1 acquired R2. 2 0 0 2 1 1 unavoidable
6 P2 acquired R2. 2 0 0 1 1 0
7 P1 acquired R1. 1 0 0 1 0 0 arisen

At time 4, P2 acquired R1 and the number of available instances of R1 became less than P1’s
need of R1. Therefore, it became necessary for P1 to wait P2 to terminate and release the
instance. However, at time 5, P1 acquired R2 necessary for P2 to finish its execution, and thus
it became necessary also for P2 to wait P1; the deadlock became unavoidable at this time.

Note that the deadlock was still avoidable at time 4 by finishing P2 first (Sample Input 2).

Input

The input consists of a single test case formatted as follows.

p r t
l1 · · · lr
n1,1 · · · n1,r
...
np,1 · · · np,r
P1 R1
...
Pt Rt

p is the number of processes, and is an integer between 2 and 300, inclusive. The processes are
numbered 1 through p. r is the number of resource kinds, and is an integer between 1 and 300,
inclusive. The resource kinds are numbered 1 through r. t is the length of the time log, and is
an integer between 1 and 200, 000, inclusive. lj (1 ≤ j ≤ r) is the number of initially available
instances of the resource kind j, and is an integer between 1 and 100, inclusive. ni,j (1 ≤ i ≤ p,
1 ≤ j ≤ r) is the number of resource instances of the resource kind j that the process i needs,
and is an integer between 0 and lj , inclusive. For every i, at least one of ni,j is non-zero. Each
pair of Pk and Rk (1 ≤ k ≤ t) is a resource allocation log at time k meaning that process Pk

acquired an instance of resource Rk.

You may assume that the time log is consistent: no process acquires unnecessary resource
instances; no process acquires instances after its termination; and a process does not acquire
any instance of a resource kind when no instance is available.

14



Output

Print the time when the system fell into a deadlock-unavoidable state. If the system could still
avoid deadlock at time t, print −1.

Sample Input 1 Sample Output 1

2 2 7

3 4

3 2

1 3

1 1

2 2

1 2

2 1

1 2

2 2

1 1

5

Sample Input 2 Sample Output 2

2 2 5

3 4

3 2

1 3

1 1

2 2

1 2

2 1

2 2

-1

15



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem G

Do Geese See God?
Input: Standard Input
Time Limit: 3 seconds

A palindrome is a sequence of characters which reads the same backward or forward. Famous
ones include “dogeeseseegod” (“Do geese see God?”), “amoreroma” (“Amore, Roma.”) and
“risetovotesir” (“Rise to vote, sir.”).

An ancient sutra has been handed down through generations at a temple on Tsukuba foothills.
They say the sutra was a palindrome, but some of the characters have been dropped through
transcription.

A famous scholar in the field of religious studies was asked to recover the original. After long
repeated deliberations, he concluded that no information to recover the original has been lost,
and that the original can be reconstructed as the shortest palindrome including all the characters
of the current sutra in the same order. That is to say, the original sutra is obtained by adding
some characters before, between, and/or behind the characters of the current.

Given a character sequence, your program should output one of the shortest palindromes con-
taining the characters of the current sutra preserving their order. One of the shortest? Yes,
more than one shortest palindromes may exist. Which of them to output is also specified as its
rank among the candidates in the lexicographical order.

For example, if the current sutra is cdba and 7th is specified, your program should output
cdabadc among the 8 candidates, abcdcba, abdcdba, acbdbca, acdbdca, cabdbac, cadbdac,
cdabadc and cdbabdc.

Input

The input consists of a single test case. The test case is formatted as follows.

S
k

The first line contains a string S composed of lowercase letters from ‘a’ to ‘z’. The length of S
is greater than 0, and less than or equal to 2000. The second line contains an integer k which
represents the rank in the lexicographical order among the candidates of the original sutra.
1 ≤ k ≤ 1018.

16



Output

Output the k-th string in the lexicographical order among the candidates of the original sutra.
If the number of the candidates is less than k, output NONE.

Though the first lines of the Sample Input/Output 7 are folded at the right margin, they are
actually single lines.

Sample Input 1 Sample Output 1

crc

1

crc

Sample Input 2 Sample Output 2

icpc

1

icpci

Sample Input 3 Sample Output 3

hello

1

heolloeh

Sample Input 4 Sample Output 4

hoge

8

hogegoh

Sample Input 5 Sample Output 5

hoge

9

NONE

Sample Input 6 Sample Output 6

bbaaab

2

NONE

17



Sample Input 7 Sample Output 7

thdstodxtksrnfacdsohnlfuivqvqsozdstwa

szmkboehgcerwxawuojpfuvlxxdfkezprodne

ttawsyqazekcftgqbrrtkzngaxzlnphynkmsd

sdleqaxnhehwzgzwtldwaacfczqkfpvxnalnn

hfzbagzhqhstcymdeijlbkbbubdnptolrmemf

xlmmzhfpshykxvzbjmcnsusllpyqghzhdvljd

xrrebeef

11469362357953500

feeberrthdstodxtksrnfacdjsohnlfuivdhq

vqsozhgdqypllstwausnzcmjkboehgcerzvwx

akyhswuojpfhzumvmlxxdfkmezmprlotpndbu

bbkblnjiedttmawsyqazekcftgshqbrhrtkzn

gaxbzfhnnlanxvphyfnkqmzcsdfscaawdleqa

xtnhehwzgzwhehntxaqeldwaacsfdsczmqknf

yhpvxnalnnhfzbxagnzktrhrbqhsgtfckezaq

yswamttdeijnlbkbbubdnptolrpmzemkfdxxl

mvmuzhfpjouwshykaxwvzrecgheobkjmcznsu

awtsllpyqdghzosqvqhdviuflnhosjdcafnrs

ktxdotsdhtrrebeef

18



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem H

Rotating Cutter Bits
Input: Standard Input
Time Limit: 3 seconds

The machine tool technology never stops its development. One of the recent proposals is more
flexible lathes in which not only the workpiece but also the cutter bit rotate around parallel
axles in synchronization. When the lathe is switched on, the workpiece and the cutter bit start
rotating at the same angular velocity, that is, to the same direction and at the same rotational
speed. On collision with the cutter bit, parts of the workpiece that intersect with the cutter bit
are cut out.

To show the usefulness of the mechanism, you are asked to simulate the cutting process by such
a lathe.

Although the workpiece and the cutter bit may have complex shapes, focusing on cross sections
of them on a plane perpendicular to the spinning axles would suffice. We introduce an xy-
coordinate system on a plane perpendicular to the two axles, in which the center of rotation of
the workpiece is at the origin (0, 0), while that of the cutter bit is at (L, 0). You can assume
both the workpiece and the cutter bit have polygonal cross sections, not necessarily convex.

Note that, even when this cross section of the workpiece is divided into two or more parts, the
workpiece remain undivided on other cross sections.

We refer to the lattice points (points with both x and y coordinates being integers) strictly
inside, that is, inside and not on an edge, of the workpiece before the rotation as points of
interest, or POI in short.

Our interest is in how many POI will remain after one full rotation of 360 degrees of both
the workpiece and the cutter bit. POI are said to remain if they are strictly inside the re-
sultant workpiece. Write a program that counts them for the given workpiece and cutter bit
configuration.

Figure H.1(a) illustrates the workpiece (in black line) and the cutter bit (in blue line) given in
Sample Input 1. Two circles indicate positions of the rotation centers of the workpiece and the
cutter bit. The red cross-shaped marks indicate the POI.

Figure H.1(b) illustrates the workpiece and the cutter bit in progress in case that the rotation
direction is clockwise. The light blue area indicates the area cut-off.

Figure H.1(c) illustrates the result of this sample. Note that one of POI is on the edge of the
resulting shape. You should not count this point. There are eight POI remained.

19



(a) (b) (c)

Figure H.1. The workpiece and the cutter bit in Sample 1

Input

The input consists of a single test case with the following format.

M N L
xw1 yw1
...
xwM ywM

xc1 yc1
...
xcN ycN

The first line contains three integers. M is the number of vertices of the workpiece (4 ≤M ≤ 20)
and N is the number of vertices of the cutter bit (4 ≤ N ≤ 20). L specifies the position of the
rotation center of the cutter bit (1 ≤ L ≤ 10000).

Each of the following M lines contains two integers. The i-th line has xwi and ywi, telling that
the position of the i-th vertex of the workpiece has the coordinates (xwi, ywi). The vertices are
given in the counter-clockwise order.

N more following lines are positions of the vertices of the cutter bit, in the same manner, but
the coordinates are given as offsets from its center of rotation, (L, 0). That is, the position of
the j-th vertex of the cutter bit has the coordinates (L+ xcj , ycj).

You may assume −10000 ≤ xwi, ywi, xcj , ycj ≤ 10000 for 1 ≤ i ≤M and 1 ≤ j ≤ N.

All the edges of the workpiece and the cutter bit at initial rotation positions are parallel to the
x-axis or the y-axis. In other words, for each i (1 ≤ i ≤ M), xwi = xwi′ or ywi = ywi′ holds,
where i′ = (i mod M) + 1. Edges are parallel to the x- and the y-axes alternately. These can
also be said about the cutter bit.

20



You may assume that the cross section of the workpiece forms a simple polygon, that is, no two
edges have common points except for adjacent edges. The same can be said about the cutter
bit. The workpiece and the cutter bit do not touch or overlap before starting the rotation.

Note that (0, 0) is not always inside the workpiece and (L, 0) is not always inside the cutter bit.

Output

Output the number of POI remaining strictly inside the workpiece.

Sample Input 1 Sample Output 1

4 6 5

-2 5

-2 -1

2 -1

2 5

-2 1

-2 0

0 0

0 -2

2 -2

2 1

8

21



Sample Input 2 Sample Output 2

14 14 6000

-3000 3000

-3000 -3000

3000 -3000

3000 -2000

2000 -2000

2000 -1000

1000 -1000

1000 0

0 0

0 1000

-1000 1000

-1000 2000

-2000 2000

-2000 3000

3000 3000

-3000 3000

-3000 2000

-2000 2000

-2000 1000

-1000 1000

-1000 0

0 0

0 -1000

1000 -1000

1000 -2000

2000 -2000

2000 -3000

3000 -3000

6785772

22



Sample Input 3 Sample Output 3

12 12 11

-50 45

-50 -45

40 -45

40 25

-10 25

-10 -5

0 -5

0 15

30 15

30 -35

-40 -35

-40 45

50 -45

50 45

-40 45

-40 -25

10 -25

10 5

0 5

0 -15

-30 -15

-30 35

40 35

40 -45

966

23



Sample Input 4 Sample Output 4

20 4 11

-5 5

-5 -10

-4 -10

-4 -1

-3 -1

-3 -10

1 -10

1 -4

0 -4

0 -1

1 -1

1 0

4 0

4 -1

10 -1

10 3

1 3

1 4

10 4

10 5

0 0

3 0

3 3

0 3

64

24



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem I

Routing a Marathon Race
Input: Standard Input
Time Limit: 3 seconds

As a member of the ICPC (Ibaraki Committee of Physical Competitions), you are responsible
for planning the route of a marathon event held in the City of Tsukuba. A great number of
runners, from beginners to experts, are expected to take part.

You have at hand a city map that lists all the street segments suited for the event and all the
junctions on them. The race is to start at the junction in front of Tsukuba High, and the goal
is at the junction in front of City Hall, both of which are marked on the map.

To avoid congestion and confusion of runners of divergent skills, the route should not visit the
same junction twice. Consequently, although the street segments can be used in either direction,
they can be included at most once in the route. As the main objective of the event is in recreation
and health promotion of citizens, time records are not important and the route distance can be
arbitrarily decided.

A number of personnel have to be stationed at every junction on the route. Junctions adjacent
to them, i.e., junctions connected directly by a street segment to the junctions on the route,
also need personnel staffing to keep casual traffic from interfering the race. The same number
of personnel is required when a junction is on the route and when it is adjacent to one, but
different junctions require different numbers of personnel depending on their sizes and shapes,
which are also indicated on the map.

The municipal authorities are eager in reducing the costs including the personnel expense for
events of this kind. Your task is to write a program that plans a route with the minimum
possible number of personnel required and outputs that number.

Input

The input consists of a single test case representing a summary city map, formatted as follows.

n m
c1
...
cn
i1 j1
...
im jm

25



The first line of a test case has two positive integers, n and m. Here, n indicates the number of
junctions in the map (2 ≤ n ≤ 40), and m is the number of street segments connecting adjacent
junctions. Junctions are identified by integers 1 through n.

Then comes n lines indicating numbers of personnel required. The k-th line of which, an integer
ck (1 ≤ ck ≤ 100), is the number of personnel required for the junction k.

The remaining m lines list street segments between junctions. Each of these lines has two
integers ik and jk, representing a segment connecting junctions ik and jk (ik 6= jk). There is at
most one street segment connecting the same pair of junctions.

The race starts at junction 1 and the goal is at junction n. It is guaranteed that there is at least
one route connecting the start and the goal junctions.

Output

Output an integer indicating the minimum possible number of personnel required.

3 1 6

4 3

Start Goal

9

Figure I.1. The Lowest-Cost Route for Sample Input 1

Figure I.1 shows the lowest-cost route for Sample Input 1. The arrows indicate the route and
the circles painted gray are junctions requiring personnel assignment. The minimum number of
required personnel is 17 in this case.

Sample Input 1 Sample Output 1

6 6

3

1

9

4

3

6

1 2

1 4

2 6

5 4

6 5

3 2

17

26



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem J

Post Office Investigation
Input: Standard Input
Time Limit: 3 seconds

In this country, all international mails from abroad are first gathered to the central post office,
and then delivered to each destination post office relaying some post offices on the way. The
delivery routes between post offices are described by a directed graph G = (V,E), where V is
the set of post offices and E is the set of possible mail forwarding steps. Due to the inefficient
operations, you cannot expect that the mails are delivered along the shortest route.

The set of post offices can be divided into a certain number of groups. Here, a group is defined
as a set of post offices where mails can be forwarded from any member of the group to any other
member, directly or indirectly. The number of post offices in such a group does not exceed 10.

The post offices frequently receive complaints from customers that some mails are not delivered
yet. Such a problem is usually due to system trouble in a single post office, but identifying
which is not easy. Thus, when such complaints are received, the customer support sends staff to
check the system of each candidate post office. Here, the investigation cost to check the system
of the post office u is given by cu, which depends on the scale of the post office.

Since there are many post offices in the country, and such complaints are frequently received,
reducing the investigation cost is an important issue. To reduce the cost, the post service ad-
ministration determined to use the following scheduling rule: When complaints on undelivered
mails are received by the post offices w1, . . . , wk one day, staff is sent on the next day to in-
vestigate a single post office v with the lowest investigation cost among candidates. Here, the
post office v is a candidate if all mails from the central post office to the post offices w1, . . . , wk

must go through v. If no problem is found in the post office v, we have to decide the order of
investigating other post offices, but the problem is left to some future days.

Your job is to write a program that finds the cost of the lowest-cost candidate when the list of
complained post offices in a day, described by w1, . . . , wk, is given as a query.

27



Input

The input consists of a single test case, formatted as follows.

n m
u1 v1
...
um vm
c1
...
cn
q
k1 w11 · · · w1k1
...
kq wq1 · · · wqkq

n is the number of post offices (2 ≤ n ≤ 50, 000), which are numbered from 1 to n. Here, post
office 1 corresponds to the central post office. m is the number of forwarding pairs of post offices
(1 ≤ m ≤ 100, 000). The pair, ui and vi, means that some of the mails received at post office
ui are forwarded to post office vi (i = 1, . . . ,m). cj is the investigation cost for the post office j
(j = 1, . . . , n, 1 ≤ cj ≤ 109). q (q ≥ 1) is the number of queries, and each query is specified by
a list of post offices which received undelivered mail complaints. ki (ki ≥ 1) is the length of the
list and wi1, . . . , wiki are the distinct post offices in the list.

∑q
i=1 ki ≤ 50, 000.

You can assume that there is at least one delivery route from the central post office to all the
post offices.

Output

For each query, you should output a single integer that is the lowest cost of the candidate of
troubled post office.

28



Sample Input 1 Sample Output 1

8 8

1 2

1 3

2 4

2 5

2 8

3 5

3 6

4 7

1000

100

100

10

10

10

1

1

3

2 8 6

2 4 7

2 7 8

1000

10

100

29



Sample Input 2 Sample Output 2

10 12

1 2

2 3

3 4

4 2

4 5

5 6

6 7

7 5

7 8

8 9

9 10

10 8

10

9

8

7

6

5

4

3

2

1

3

2 3 4

3 6 7 8

3 9 6 3

8

5

8

30



ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem K

Min-Max Distance Game
Input: Standard Input
Time Limit: 1 second

Alice and Bob are playing the following game. Initially, n stones are placed in a straight line on
a table. Alice and Bob take turns alternately. In each turn, the player picks one of the stones
and removes it. The game continues until the number of stones on the straight line becomes
two. The two stones are called result stones. Alice’s objective is to make the result stones as
distant as possible, while Bob’s is to make them closer.

You are given the coordinates of the stones and the player’s name who takes the first turn.
Assuming that both Alice and Bob do their best, compute and output the distance between the
result stones at the end of the game.

Input

The input consists of a single test case with the following format.

n f
x1 x2 · · · xn

n is the number of stones (3 ≤ n ≤ 105). f is the name of the first player, either Alice or Bob.
For each i, xi is an integer that represents the distance of the i-th stone from the edge of the
table. It is guaranteed that 0 ≤ x1 < x2 < · · · < xn ≤ 109 holds.

Output

Output the distance between the result stones in one line.

Sample Input 1 Sample Output 1

5 Alice

10 20 30 40 50

30

Sample Input 2 Sample Output 2

5 Bob

2 3 5 7 11

2

31


